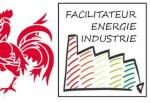


Journée de l'énergie pour l'Industrie

AMUREBA

Une méthodologie commune aux Audits Bâtiment, Tertiaire et Industrie


11 Octobre 2023, Jean-Michel Dols & Jean-Benoît VERBEKE

PIROTECH - Jean-Benoît VERBEKE

25 ans d'expérience en thermique et énergétique dans les entreprises

Ingénieur civil physicien (UCL, 1996)

Administrateur de Pirotech SRL

www.pirotech.be

Facilitateur « Energie » pour l'industrie wallonne (conseiller énergie PMI industries)

Expert pour les autorités wallonnes et bruxelloises pour les audits énergétiques industriels et tertiaires

Evaluateur COFRAC pour la vérification des émissions de CO₂ et des quotas gratuits

Référent certifié en mesures & vérification (IPMVP)

GREISCH - Jean-Michel DOLS

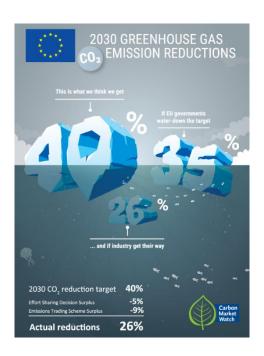
Plus de 40 ans d'expérience en Project Management en Industrie et Bureau d'Etude, et 25 ans d'expérience spécifique en énergétique (ADB1 et ADB2)

Ingénieur civil électricien-mécanicien (ULiege, 1980) Administrateur de DOLTEC SRL

Management de projets industriels (inter)nationaux de tailles variable (1 à 300 M€)

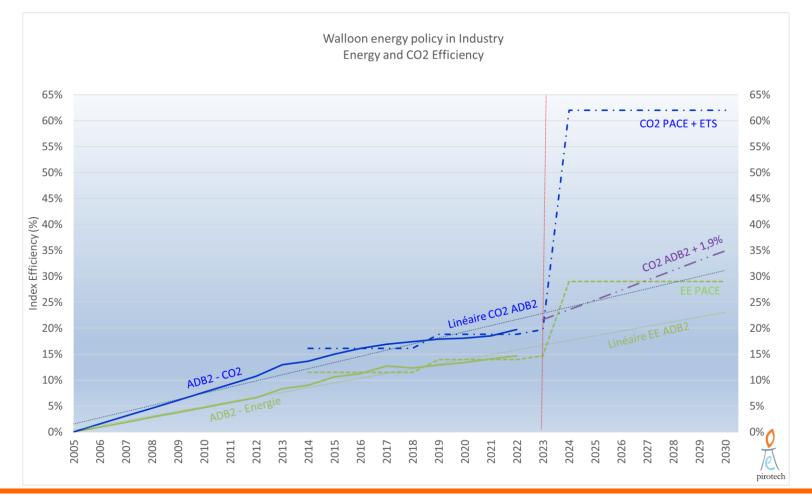
Développement de la méthode EPS dès 1998 pour ECONOTEC puis application en ADB1

Mise au point de la méthodologie ADB2 pour 3j-Consult 2011-2012 puis application en ADB2

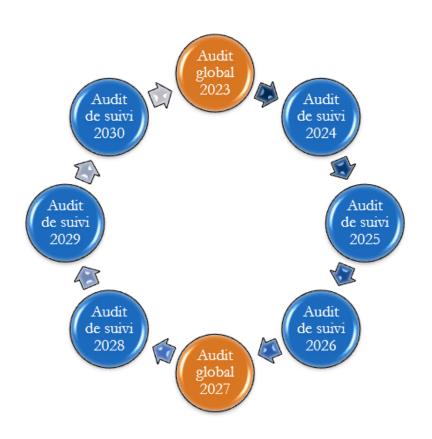

Depuis 2019 : Project Manager cellule TSEN de greisch

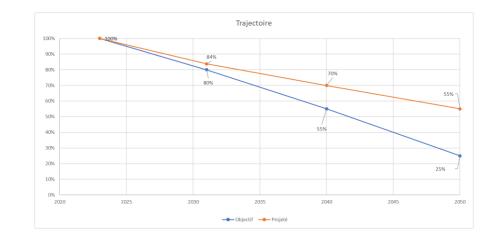
Audit réglementaire et audit volontaire

Une méthodologie unique pour toutes les entreprises:



- > Directive et règlements européens: EED recast 2023, PEB, SER, ETS, ...
- > PACE
- Norme EN16247, Iso50001 et suivantes
- > ADB2 (rev 2016) et Audit unifié (2018)
- > AGW AMUREBA et AGW Convention carbone


Contribuer aux engagements de la Wallonie

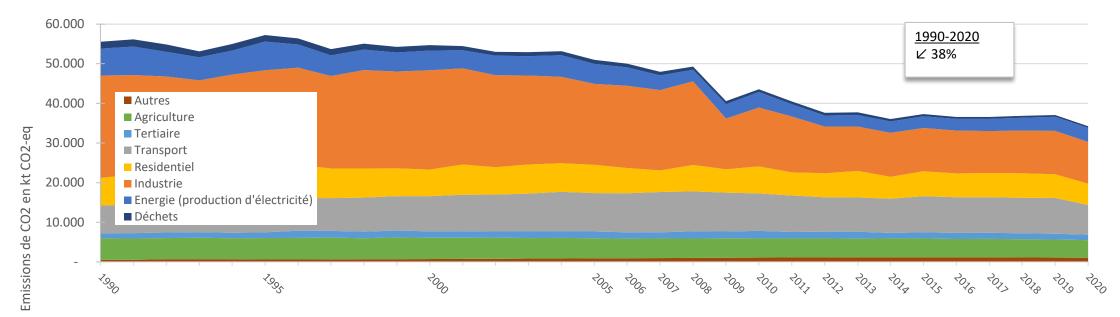


Des objectifs et une trajectoire

- ✓ Objectif ferme
- ✓ Objectif conditionnel
- ✓ Trajectoire (roadmap)

Journée énergie du 11 octobre 2023

Energie finale


- ✓ Electricité, combustible, renouvelable, réseau de chaleur
- ✓ Consommé = Import Export
- ✓ En excluant la consommation du secteur de la transformation de l'énergie et de l'industrie énergétique

Emissions de CO2

Evolution des émissions totales de GES en Wallonie

Pirotech, source AWAC

- ✓ Electricité, combustible, réseau de chaleur
- ✓ CO2 du procédé
- ✓ Import Export & séquestration

Journée énergie du 11 octobre 2023

Renouvelable

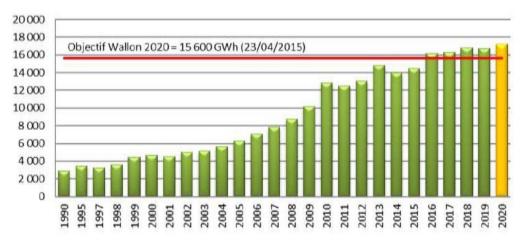


Figure 26 - Évolution de la production d'énergie brute renouvelable au sens de la directive 2009/28/CE et objectif wallon en 2020.

Bilan énergétique Wallonie 2020

- ✓ Solaire, éolien, géothermie
- ✓ Biomasse durable

✓ Pompes à chaleur

Journée énergie du 11 octobre 2023

Choisir son auditeur

AGW AMUREBA – Annexe 1 (en 2ème lecture)



Le type	La dénomination	Les sous-catégories (liste non exhaustive)
Généraliste	Tertiaire	
Généraliste	Industrie	
Généraliste	Interne	
Spécialiste	Eclairage	
Spécialiste	Energie thermique (renouvelable ou fatale)	 la Pompe à Chaleur la Combustion Biomasse le Solaire thermique la Géothermie la Récupération d'énergie fatale le Stockage Thermique
Spécialiste	Électricité renouvelable	 l'éolien l'hydro-électricité le photovoltaïque l'hydrogène vert la mobilité électrique le stockage d'électricité
Spécialiste	Froid	le froid industrielle froid commercial
Spécialiste	Utilités (Energie industrielles transformées)	 l'air comprimé l'électricité industrielle la force motrice la thermique industrielle, combustion la vapeur ou l'eau surchauffée
Spécialiste	Cogénération	Industrielle Tertiaire

Périmètre

Périmètre énergétique

Un site est lié à un (ou plusieurs) <u>point(s)</u> de <u>comptage</u> pour chaque vecteur énergétique entrant et sortant, et peut inclure:

- ✓ Bâtiment(s)
- ✓ Activité(s) opérationnelle(s)
- ✓ Utilité(s)
- ✓ Transport(s)

Bâtiment

- ➤ AMUREBA = « tous types » d'entité à auditer
- > Consommation énergétique « Bâtiment » :
 - ✓ Entité auditée peut **être** un bâtiment (tertiaire) ou (très généralement) **comprendre** un (des) bâtiment(s)
 - ✓ Consommation « bâtiment » = énergie consommée dans le but de maintenir au sein d'une « enveloppe » des conditions nécessaires aux occupants
 - ✓ En pratique : éclairage, ventilation, chauffage (de locaux), refroidissement (climatisation de locaux) (usages PEB)
 - ✓ Rem : autres usages d'énergie que ci-dessus (ex : maintien de conditions pour produits ou matières, maintien de conditions dans plages de température « basse » (< 10°C) ou « haute » (> 30°C) ne sont PAS des consommations « bâtiment »
- Autre « Bâtiment » => consommation énergétique « Activités Opérationnelles »

Vecteur énergétique – énergie finale

- « Forme » suivant laquelle l'énergie pénètre le périmètre de l'entité auditée et y est consommée
- > 3 catégories :
 - ✓ Energies approvisionnées (électricité, combustibles, énergies renouvelables, ...)
 - ✓ Matières énergétiquement valorisées (valorisation énergétique de matières) (PAS « énergie grise »)
 - ✓ Utilités (vecteurs fabriqués au sein de l'entité, à partir des 2 premières catégories)
- > Comptabilisation des vecteurs :
 - ✓ D'abord en unités usuelles (kWh, litres, Nm³, ...)
 - ✓ Puis transformation en **énergie finale** (kWhf) et en **émissions de CO2 énergétique** (kg CO2eq) via coefficients de conversion et facteurs d'émission (conventionnels pour énergies approvisionnées Rem PC**S** pour combustibles)
 - ✓ Permet d'obtenir « la » consommation globale en énergie finale d'une entité (addition des vecteurs « énergies approvisionnées » et « matières énergétiquement valorisées »)

Usage

- Usage = utilisateur ou consommateur d'énergie, à identifier/particulariser
 - ✓ Nombre d'usages détermine la « finesse » avec laquelle l'analyse énergétique est décomposée, tracée et expliquée
 - ✓ Grandes catégories possibles : bâtiments activités opérationnelles utilités export ...
- Usage significatif
 - ✓ Dont le niveau de consommation individuel est proportionnellement important
 - ✓ OU dont le potentiel d'évolution/amélioration est important
 - ✓ Mais usages « non significatifs » doivent bien être comptabilisés également

Facteur d'influence

- Notion **très importante** pour validité-solidité du « modèle énergétique » devant représenter l'entité auditée
- Paramètre ou valeur quantifiant « l'activité » d'un usage (au sens très large)
 - ✓ Relation de **dépendance/corrélation** entre consommation énergétique usage et son facteur d'influence
 - ✓ Si possible linéaire proportionnelle (notion générale de « signature énergétique »)
 - ✓ Permet de définir consommation (émission) spécifique, càd de « normaliser » les consommations d'énergie
 - ✓ Important de définir des facteurs d'influence pertinents
 - Suivant la nature choisie : qualité de la corrélation consommation/facteur
 - Suivant la manière dont les choses vont évoluer et dont on devra en rendre compte

Facteur d'influence (suite)

- Influence choix/nature des facteurs d'influence sur la subdivision entre usages
 - ✓ Chaque usage significatif => son facteur d'influence
 - ✓ Mise en évidence des « talons de consommation » ou de la consommation « à facteur d'influence principal nul » => nécessité de subdivision
 - ✓ Usages non significatifs : pas de facteur d'influence => possibilité de les grouper avec d'autres

Diagramme des flux

Natural Gas

Electricity

Essence

Entité - DIAGRAMME FLUX REV 2023-07-27

Elec Consommée

Périmètre Entité

bureautique

Chauffage

Refroidissement

Serveurs

Transport

Tableau de consommation

- Tableau de consommation = mise en forme de l'analyse des flux
- > Sous forme de tableau à 2 entrées
 - ✓ Colonnes = vecteurs énergétiques (1 colonne/vecteur suivant les 3 catégories)
 - ✓ **Lignes** = usages (1 ligne/usage (significatif) suivant les catégories principales : bâtiment, activités opérationnelles (si présentes), utilités (si présentes), exports (si présents))
 - Avec un facteur d'influence par ligne (usages significatifs)
 - ✓ Etabli en unités usuelles (à chaque vecteur son unité)
 Puis converti en énergie finale (kWhf)
 Et en émissions de CO2 (kgCO2)
 - ✓ Tableau dont la **structure** et la **granulométrie** sont également très **importantes** pour une bonne qualité/solidité du modèle énergétique

Tableau de consommation (suite)

- > Tableau à remplir pour **chaque année** examinée et dont les valeurs à noter dans chaque case proviennent de sources à identifier/expliciter/tracer, via
 - ✓ Compteurs
 - ✓ Mesures
 - ✓ Calculs
 - ✓ (Clés de) répartition, ...

Tableau de consommation (suite)

> Exemple bâtiment

Tableau des consommations - unités usuelles	Energies		
Année auditée : XXXX	Electricité	Vecteur 2	
Affilee additee . AAAA	kWh	unité	
Bâtiments - usage PEB - 01			
Bâtiments - usages PEB - 02			
Bâtiments - usages PEB - XX			

Exports		
---------	--	--

Totaux	Electricité	Vecteur 2
Tableau - consommations du périmètre		
Tableau - consommation du périmètre et des exports		
Total de l'énergie approvisionnée (facture, Compteurs, etc)		

Vérification de l'égalité de ces deux lignes => **OK**

Facteurs de conversion	Electricité	Vecteur 2
Energie finale (kWh énergie finale/unité "usuelle")	1,00	
Emission de CO2 (kgCO2/kWh énergie finale)	0,230	

Total consommations du périmètre d'audit	Unite	é Quantité
Energie finale	kWh	nf -
Emission de CO2 du périmètre	kgCO	
Emission de CO2 du périmètre et des exports	kgCO)2 -

Tableau de consommation (suite)

Exemple industrie

	Année auditée : XXXX Unités "usuelles"	Energi			Energies locales renouvelabl es	Matières énergétiqu ement valorisées	Utilités
		Vecteur 1	Vecteur 2	Vecteur 3	Vecteur 4	Vecteur 5	Vecteur 6
		Unité	Unité	Unité	Unité	Unité	Unité
SC .	Bâtiments - usages PEB						
tio	Bâtiments - usages non PEB						
ommatior périmètre	Process						
Consommations du périmètre	Transport						
ons	Autre						
ت	Utilités						
Export	s						

Facteurs d spécifiques	
Unité	Quantité

Totaux	Vecteur 1	Vecteur 2	Vecteur 3	Vecteur 4	Vecteur 5	Vecteur 6
Tableau - consommations du périmètre						
Tableau - ensemble du tableau						
Compteurs et/ou estimations						

Vérification de l'égalite	é
de ces deux lignes	

Facteurs de conversion	Vecteur 1	Vecteur 2	Vecteur 3	Vecteur 4	Vecteur 5	Vecteur 6
Energie finale						
Emission de CO2						

Total consommations du périmètre d'audit	Unité	Quantité
Energie finale		
Emission de CO2		
Emission de CO2 avec "bonus export"		

Plan d'action

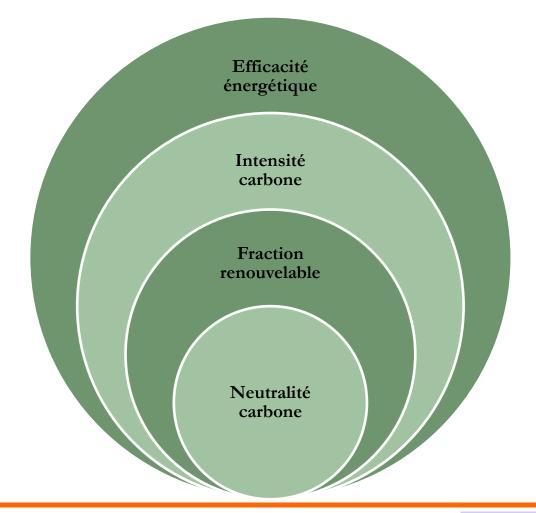
Pour toute action d'amélioration

- > Gain en énergie, CO2 et renouvelable
- > Gain non énergétique
- > Investissement dans le cadre d'une analyse de préfaisabilité
- > Temps de retour actualisé et TIR

Objectif

L'objectif dépend du cadre de l'audit

- ➤ Audit réglementaire → Obligation d'audit et SME
- ➤ Audit du bâtiment (public) → Décarbonation à long terme indépendante de la rentabilité
- ➤ Audit convention carbone → 1 objectif prioritaire et 2 objectifs indicatifs
 - ✓ Résulte du plan d'action
 - ✓ L'objectif ferme de l'entité est calculé en faisant la somme des gains des actions de classe de faisabilité R et A avec TRI > 11%
 - ✓ L'objectif conditionnel de l'entité est fixé en faisant la somme de l'objectif fixe et de la somme des gains des actions conditionnelles retenues.
 - ✓ Challengé par le Comité technique



Suivi de la performance

Suivi – Indices de performance

Lorsqu'on dispose de **plusieurs** tableaux de consommation

- > Année de **référence** et année **d'évaluation**
- Possibilité de définir des indices de performance, dont un est à choisir pour définir un objectif engageant
- > 3 indices traduisant séparément les performances en
 - Efficacité énergétique
 - Intensité carbone
 - Pénétration des énergies renouvelables

Journée énergie du 11 octobre 2023

Suivi de la performance

Suivi – Indices de performance (suite)

- \rightarrow IEE (t) = (CRE (t))/(CRA (t))
 - ✓ Où CRE (t) = Consommation en énergie finale pour l'ensemble du périmètre examiné et pour l'année t
 - ✓ CRA (t) = Consommation de référence en énergie finale, mais actualisée aux conditions de fonctionnement (indicateurs d'activité) de l'année t
 - ✓ Possibilité de définir : AEE(t) = 100% IEE(t)
 - ✓ Prise en compte d'ajustements, tant pour la référence que pour l'année d'évaluation
- > ICO2 (t) = (Intensité Carbone (t))/(Intensité Carbone (réf))
 - ✓ Où intensité carbone = Emissions CO2 (kgCO2)/énergie finale (kWhf)
- \rightarrow ISER (t)= (CSER (t))/(CRE (t))
 - ✓ Où CSER (t) = production énergie renouvelable d'origine imputable au périmètre pour l'année t
 - ✓ CRE (t) = Consommation en énergie finale pour l'ensemble du périmètre examiné et pour l'année t

Suivi de la performance

Validation du modèle

- > Pour valider la représentativité du modèle énergétique ainsi défini
 - ✓ Etablissement de la plage de validité
 - ✓ Validation de l'année de référence (pas de biais dans la définition des consommations spécifiques application d'un ajustement si nécessaire)
 - √ Validation par une 2^{ème} année
 - Recoupement entre indices calculés et leur calcul provenant des actions d'amélioration mises en œuvre
 - ✓ Vérification de la précision du modèle
 - Qualité de la corrélation entre consommation et facteur d'influence pour les usages significatifs

Prochaines étapes

Formations

- > 1 journée (novembre 2023) pour
 - ✓ Auditeurs ADB2
 - ✓ Auditeurs internes
 - √ Vérificateurs
- > 3 journées pour les nouveaux auditeurs (2024)

Merci

Pirotech SRL Jean-Benoît Verbeke 0478/43.79.84 jbv@pirotech.be

Jean-Michel Dol jmd@doltec.be

